
Streaming 360-Degree Videos Using
Super-Resolution

Mallesham Dasari∗, Arani Bhattacharya†, Santiago Vargas∗, Pranjal Sahu∗, Aruna Balasubramanian∗, Samir R. Das∗
∗Stony Brook University, †KTH Royal Institute of Technology

∗{mdasari, savargas, psahu, arunab, samir}@cs.stonybrook.edu †aranib@kth.se

Abstract—360◦ videos provide an immersive experience to
users, but require considerably more bandwidth to stream
compared to regular videos. State-of-the-art 360◦ video streaming
systems use viewport prediction to reduce bandwidth require-
ment, that involves predicting which part of the video the user will
view and only fetching that content. However, viewport prediction
is error prone resulting in poor user Quality of Experience (QoE).
We design PARSEC, a 360◦ video streaming system that reduces
bandwidth requirement while improving video quality. PARSEC
trades off bandwidth for additional client-side computation to
achieve its goals. PARSEC uses an approach based on super-
resolution, where the video is significantly compressed at the
server and the client runs a deep learning model to enhance
the video to a much higher quality. PARSEC addresses a set of
challenges associated with using super-resolution for 360◦ video
streaming: large deep learning models, slow inference rate, and
variance in the quality of the enhanced videos. To this end, PAR-
SEC trains small micro-models over shorter video segments, and
then combines traditional video encoding with super-resolution
techniques to overcome the challenges. We evaluate PARSEC on
a real WiFi network, over a broadband network trace released by
FCC, and over a 4G/LTE network trace. PARSEC significantly
outperforms the state-of-art 360◦ video streaming systems while
reducing the bandwidth requirement.

Index Terms—360◦ Video, ABR Streaming, Super-resolution.

I. INTRODUCTION

360◦ video streaming brings an immersive experience by
projecting the panoramic content on a virtual display. Its
popularity on commercial streaming platforms is on the rise.
The key challenge with 360◦ videos is that they require 8×
more content to be downloaded than regular videos for the
same perceived quality due to their panoramic nature [11].
Recent work has shown that the bandwidth requirement can
be reduced by viewport1 adaptive streaming where the content
to be downloaded is restricted to the user’s predicted view-
port [32], [41], [42]. A 360◦ video is divided into segments
temporally to enable streaming, and each segment is divided
spatially into video tiles to enable viewport adaptation.

Unfortunately, accurate viewport prediction is difficult;
state-of-the-art viewport-adaptive systems only have an accu-
racy of ≈ 58− 80% even for predicting just 1 sec in advance
and progressively lower for longer durations [15], [32]. To
counter imperfect prediction, additional content beyond the

†Work done when the author was at Stony Brook University.
1The viewport is the portion of the 360◦ scene that is currently visible to

the user.

predicted viewport needs to be fetched to avoid missing
portions of the viewport at the time of viewing [32] (tile
miss). This only addresses the issue partially as this additional
content consumes network bandwidth as well.

We describe a different approach for streaming 360◦ videos
for better adaptation: trading off network bandwidth for client-
side compute capacity. We design PARSEC (PAnoRamic
StrEaming with neural Coding) – a system that fetches low
resolution 360◦ video content over the network and recon-
structs the high resolution content at the client by utilizing
recent advances in deep neural networks (DNN) based super-
resolution [14], [24]. While the general idea is promising,
there are several challenges in this approach, all of which
stem from the large size of the 360◦ videos. First, much of the
360◦content is consumed on mobile devices. Even though cur-
rent generation mobile devices have improved compute capac-
ity, running a DNN model to reconstruct a high quality 360◦

video from low resolution input is very slow [22]. Second,
the DNN models are large and require considerable network
bandwidth [45], which defeats the original motivation. Finally,
because the model has to generalize over the entire video, there
is a large variance in the quality of the reconstructed videos.
Related works that use similar neural techniques [18], [45] do
not face any of these problems because they are designed for
regular videos that are considerably smaller.

PARSEC exploits two ideas well-suited for 360◦ videos.
First, PARSEC trains super-resolution DNN models over small
segments of the video (§III). Use of these small micro-
models results in three benefits: i) much faster inference rate,
ii) addressing viewport prediction inaccuracy by dynamically
generating any tile based on user’s current viewport, iii) the
model transfer over the network is now efficient and can be
streamed for each segment, unlike streaming a single large
model for the entire video in the beginning. Second, PARSEC
pools both compute and network resources using a neural-
aware adaptive bitrate (ABR) algorithm (§IV). For a subset
of tiles that spatially partition a given video segment, PARSEC
uses the DNN model to locally generate high resolution tiles.
For the remaining subset of tiles, PARSEC streams the tiles at
high resolution from the server subject to the available network
bandwidth. The ABR algorithm determines which tiles to
generate locally and which to fetch from the server, given the
predicted viewport, available bandwidth and available compute
resources. PARSEC formulates this problem as an Integer

Linear Program and solves it using a greedy algorithm. Finally,
PARSEC combines the neural ABR technique with viewport
prediction, and reschedules tile generation by updating the
predictions dynamically.

We implement PARSEC on top of GPAC [21], a multimedia
library that provides APIs for video coding, rendering and tile
packaging in DASH format. We develop the DNN models in
Python using Keras [4] and Tensorflow [10] frameworks. We
evaluate PARSEC using a 360◦ video dataset [25] that has
traces of 50 user’s head movements as they watch 10 videos.
We compare the performance with three alternative approaches
– Flare [32] and Fan et al [15] that are designed for 360◦ video,
and an adaptation of NAS [45] for 360◦ video.2

PARSEC outperforms all three alternatives across all experi-
ments. In terms of video quality of experience (QoE), PARSEC
outperforms the state-of-the-art 360◦ video streaming system,
Flare [32], by 37–48% over publicly available broadband
network and 4G/LTE traces. PARSEC also improves QoE by
17–28% for experiments over real WiFi networks. When the
network is really poor (1 Mbps), the relative performance of
PARSEC is even better, outperforming alternatives by 1.8×.
Finally, we highlight that PARSEC uses 43% less bandwidth
compared to Flare when the network is not the bottleneck,
which is more promising when multiple users access the same
network (§V).

II. BACKGROUND, RELATED WORK AND OVERVIEW

A. 360◦ Video Streaming

A 360◦ video is a spherical video where multiple camera
directions are recorded simultaneously. The recorded content is
projected on a planar surface [1], [2], [49] and then traditional
video encoding techniques (e.g., HEVC [48]) and protocols
such as DASH [36] are used for streaming. We assume an
equirectangular projection [1] as typically used in related
work [15], [30], [32], [43].

ABR streaming: For streaming, the video is first segmented
across time and then each segment is encoded in a number
of different bitrates/quality levels and stored at the server.
The different quality levels that are available for each video
segment are captured in a manifest file sent from the server
to the client. The client (or, sometimes the server) runs an
adaptive bitrate (ABR) algorithm [45] to determine the bitrate
for streaming based on the available network bandwidth.

Viewport-adaptive 360◦ video streaming: 360◦ videos re-
quire 8× more content to be downloaded relative to regular
video for the same quality, thus significantly increasing band-
width requirement [11]. To combat this, recent studies use
viewport prediction [15], [30], [32], [43]. Each segment of
the 360◦ video, after projection on a 2D plane, is partitioned
spatially into tiles. Only the tiles in the user’s predicted view-
port are streamed to the client. A viewport-adaptive streaming
system specifies which tiles to fetch according to the predicted

2NAS leverages super-resolution techniques for regular video streaming.
We adapt NAS to 360◦ video streaming by integrating with our viewport
prediction.

viewport, and then uses an ABR algorithm to determine the
bitrates to be used for these tiles. Recent studies such as [15],
[30], [32], [43], follow a similar architecture.

B. PARSEC’s Motivation

PARSEC overcomes the limitation of poor accuracy of
viewport prediction, described below, by exploiting underuti-
lized compute capacity on the client device.
Limitation – Poor accuracy of viewport prediction: Clearly,
a perfect viewport prediction can make 360◦ video as efficient
as regular videos in terms of bandwidth usage for the same
quality of experience. However, in reality such predictions
have poor accuracy. This is hardly surprising as predicting the
viewport is same as predicting the user’s future visual attention
in a panoramic scene – a challenging problem in computer
vision [20], [29]. For example, state-of-the-art viewport pre-
diction [15], [32] has an accuracy of≈ 58−80% for predicting
the user viewport just one second in advance. Predictions
further in advance exhibit worse accuracy. To accommodate
for the possibility of ‘tile misses’ due to poor viewport
prediction some adaptive 360◦ streaming systems [17], [32]
fetch additional tiles (e.g., tiles in the neighborhood of the
predicted viewport) at lower resolutions. These non-viewport
tiles now compete for bandwidth along with viewport tiles.
This presents a tradeoff between the resolution of the content
the user actually views and possibility of tile misses (which
will incur stalls). This impacts quality of experience. Our
evaluation (§V) demonstrates this problem. While viewport
prediction is important, the currently available computer vision
techniques are still insufficient.
Opportunity – Underutilized compute capacity on client:
Mobile devices today have multi-core high-speed CPUs and
also a variety of co-processors, specifically fairly capable
GPUs that can accelerate a variety of computations amenable
to the SIMD paradigm. It is also widely speculated that NPUs
(neural processing unit) will be soon available on mobile
platforms [9].

Thus, one promising direction is to leverage the under-
utilized compute capacity to enhance the quality of the video
content using neural encoding [18], [45]. Here, the video
is down-scaled and compressed significantly to a very low-
resolution, and then an appropriately trained DNN model
reconstructs the high-resolution version of the video. This
shifts part of the burden from the network to the proces-
sors on the client device. We explore different recent deep
learning techniques such as Generative Adversarial Networks
(GANs) [16], Autoencoders [33] and Super-resolution [24],
and find super-resolution to be the most suitable method in the
context of streaming videos in terms of inference and model
complexity (see §III).

C. PARSEC Overview and Goal

The goal for PARSEC is to improve the QoE of 360◦

videos under constrained bandwidth and imperfect viewport
prediction. The key idea is to 1) exploit unused compute
capacity in the client devices to reconstruct video content

360p 480p 720p 1080p 4K 8K
Video Resolution

0
5

10
15
20
25
30
35
40

In
fe

re
n
ce

 R
a
te

 (
Fp

s)

0

5

10

15

20

M
o
d
e
l
S
iz

e
 (

M
B

)Inference Rate

Model Size

(a)

1 2 5 10 30 60
Video Segment Length (Seconds)

0
5

10
15
20
25
30
35
40

In
fe

re
n
ce

 R
a
te

 (
Fp

s)

0

5

10

15

20

M
o
d
e
l
S
iz

e
 (

M
B

)Inference Rate

Model Size

(b)

Fig. 1: Challenges of super-resolution in terms of inference
rate and model size. a) Impact of resolution – trained for one
minute video, b) Impact of video length – trained on 4K video.

and 2) arrive at an optimal balance of what content to
download and what to reconstruct. The reconstruction part
uses a deep learning-based super-resolution approach that is
able to reconstruct the content from a down-scaled version.
We show that by exploiting client-side co-processors such
as GPU, PARSEC can significantly reduce the pressure on
network bandwidth, overcome the poor accuracy of viewport
prediction, and improve QoE. There are two key innovations.

Use of micro-models (§III): A straightforward application of
super-resolution as used in regular videos [18], [45] does not
work well in the 360◦ case due to very large neural network
model size and slowdown in the inference rate (no. of frames
that can be reconstructed per sec). In PARSEC, we explore
use of micro-models (very small models) that i) model small
video segment lengths at a time and ii) reconstruct one tile
at time for the segment and not the entire panoramic scene.
This improves download time and also inference rate. This
per-tile approach also allows the flexibility of upscaling from
a very low-resolution input (we call this ultra-low resolution
or ULR tiles) still keeping the model size reasonable. In our
evaluations, we have achieved 64× upscaling (§III-C).

Neural-aware ABR algorithm (§IV): Even with improved
inference rate with micro-models, the rate of generating tiles
locally is not enough to support high quality video streaming.
Thus, PARSEC leverages both network and compute resources
to stream 360◦ videos. PARSEC chooses which tiles to fetch
from the server, and which tiles to generate locally. PARSEC’s
neural-aware ABR algorithm takes into account the variance
in tile quality of locally generated tiles, as well as the network
and compute capacities. PARSEC incorporates its scheduling
algorithm into the viewport adaptive ABR framework. Finally,
PARSEC is able to dynamically reschedule tile generation at
the client device in response to a change in user’s viewport.
Because PARSEC can compress tiles to ultra low resolution
(ULR), for each video segment, PARSEC downloads all ULR
tiles. A combination of the above two makes tile miss rela-
tively uncommon (validated in §V).

III. STREAMING 360◦ VIDEOS USING SUPER-RESOLUTION

Super-resolution creates or restores a high resolution im-
age from one or more low resolution images of the same
scene [24], [31]. It has been used in surveillance [50], medical
imaging [35], [39], and recently in video streaming [45]. Note

here that video applications already encode/compress videos
to reduce bandwidth demand using traditional techniques.
Super-resolution takes this general idea significantly further
by providing a trained DNN model that is used by the client
to ‘infer’ the original high-resolution content from a very low-
resolution input [24]. The inference exploits the GPU power
available at the client end.

A. 360◦ versus Regular Videos

While super-resolution is indeed promising, one needs to
take careful design decisions to make it work effectively.
The key challenge here is the large spatial content for 360◦

videos. Because of the low accuracy of viewport prediction,
the entire 360◦ video needs to be trained so that any tile can
be reconstructed on the client depending on the viewport of
the user. The result is that the models trained to reconstruct
360◦ videos are 1) large, creating additional burden to transfer
from the server to the client, and 2) have slower inference rate
risking real time requirements of playback speed. Attempts to
keep model complexity low results in loss of video quality.

To illustrate this, we run a series of micro-benchmarks using
the experimental setup described in §V. We train a DNN model
similar to NAS [45], a recent video streaming study that uses
super-resolution for regular video and trains a single model
for the entire video. Video length of 1 minute is used for
training, with a target PSNR of 30dB.3 Figure 1a shows the
impact of video resolution on model size and inference rate
on the Galaxy S10 phone. The key takeaways from the figure
is that: 1) the inference rate for high resolution content such
as 4K and 8K videos is prohibitively slow (less than 2 fps), 2)
the model size for these high resolutions is very high. Figure
1b complements this analysis by showing how training for
different video segment durations impacts the performance
metrics. The inference rate is progressively poorer for longer
video segments and becomes less than 2 fps for 1 min long
video. Even for the smallest video length (1 sec) it falls short
(< 10 fps). Also, the model size increases super-linearly with
video lengths beyond a certain point (5 sec).

Clearly, a plain use of the super-resolution technique that
works well for regular videos is not effective for 360◦ videos.
However, 360◦ videos provide unique opportunities for opti-
mization. First, the super-resolution can be employed individ-
ually for tiles as opposed to the entire panoramic scene and
only the tiles likely to be in the viewport could be generated
thus saving on computational burden of inference.4 Also, not
all tiles in the viewport need to be generated; some can be
downloaded using a traditional adaptive streaming technique.
We will explore the latter aspect in §IV.

B. Micro-Models for Super-resolution

The insight in PARSEC is to train the model for very short
video lengths. We call them micro-models. In the previous

3We target at least 30dB because it is the minimum PSNR needed to
perceive a good video playback experience [40]

4Note that tiling regular videos is not efficient because it introduces
unnecessary cross-tile compression overheads [32].

360° Video
Segment

Original High
Quality Tiles

Down-
Sampled Tiles

Compressed
ULR Tiles

Reconstructed
High Quality Tiles

3840x1920

192x192 24x24 24x24 192x192

.

.

.

.

.

.(20x10 Tiling)

.

.

.

.

.

.

Co
nv

2D
Le

ak
yR

el
u

Ba
tc

hN
or

m
Su

m

Lo
w

-le
ve

l F
ea

tu
re

s

Residual Connections

De
co

nv
ol

ut
io

n

Re
co

ns
tr

uc
tio

n

Super Resolution Micro Model

Fig. 2: Super-resolution micro-model architecture (similar to [45]). The model training and ULR tile processing is done offline
and transferred to the video server later. The figure shows an example with a tile size of 192×192 down-scaled to 24×24.

20
Mbps

15
Mbps

10
Mbps

5
Mbps

1
Mbps

Super
 Resolution

Coding Strategies

10

20

30

40

50

PS
NR

 (d
B)

(a)

1 50 100 150 200 250
Tile Segment Size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

20Mbps
15Mbps
10Mbps
5Mbps
1Mbps
Superresolution

(b)

Fig. 3: HEVC video encoding quality and size for different
rates vs. the super-resolution approach. The bitrate and quality
are computed for each tile with a tile size of 192x192 for one
second segment.

subsection we have showed that training the model for shorter
video lengths is efficient both in terms of inference rate
and model size. In addition, the micro-models are trained
at a segment level so that individual tiles can be upscaled
dynamically depending on the current viewport of the user.
This is especially critical for 360◦ videos where a user can
only see a part of the scene, but this part cannot be accurately
predicted in advance. The trade-off is that the client downloads
a large number of small (micro) models, but each micro-model
is only trained for a short video segment. Downloading small
models at regular intervals is more efficient than downloading
one large model at the start of video streaming. We now
describe how the model is built in PARSEC.
Super-resolution architecture: Our architecture of super-
resolution model is shown in Figure 2. We use a deep
convolutional neural network (CNN) similar to [24], [45]
to capture high level features in the video. We vary the
number of network layers depending on the length of the
video segment and the desired quality of the generated video.
Each convolutional layer is followed by a LeakyRelu activation
function [26], and Batch normalization for faster learning [19].
The neural network first extracts the high level features from
low-level pixels and uses a non-linear mapping function to
learn the original missing content details. Finally, the network
uses a deconvolution layer to map the high resolution directly
from the low resolution without image interpolation. More
details of super-resolution can be found at [24], [31], [45].

Model training: Each model is trained for one video segment.
First, the original video is divided into temporal segments (e.g.,
1-2 secs) and tiled spatially (e.g., 192×192 pixels). Each tile is

then down-scaled (e.g., 24×24 pixels) and compressed using
a standard H.265 encoder, resulting in ULR tiles. Each ULR
tile is then decoded and fed to the neural network as input
to reconstruct original high resolution using the ground-truth
tiles. While training, we use the PSNR metric [47] as the loss
function to directly optimize for PSNR quality. We manually
fine-tune the number of layers and filter size to achieve the
desired median quality when mapped from ULR tiles to high
resolution. We empirically determine optimal values for all
the design choices such as tile size, the extent to which we
down-scale and the length of the segment (as described in §V).

C. Benefits of Super-resolution versus HEVC Encoding

It is important to understand the quality of the reconstructed
video in the super-resolution approach and its bandwidth
usage. We compare the PSNRs of the generated video in
the super-resolution approach vs. standard HEVC encoding at
multiple bit rates (Figure 3(a)) and the corresponding actual
demands on the network measured in bytes (Figure 3(b)).
Clearly, the super-resolution approach performs better quality-
wise than the 1 Mbps video while saving about 7× bandwidth
(median). The savings are more significant at the 90th per-
centile. This comprehensively demonstrates the potential of
the super-resolution approach for streaming 360◦ videos.

IV. NEURAL-AWARE ABR ALGORITHM

PARSEC’s Adaptive Bit Rate (ABR) algorithm explores the
tradeoff between available network and client-side compute
capacities. In contrast to existing 360◦ video streaming solu-
tions that use the network as their only resource, PARSEC
uses a hybrid approach for its ABR: 1) it uses the available
network capacity to stream a subset of tiles from the server;
2) it decides on the bitrate (quality) of the tiles to be fetched;
3) it also leverages the available compute capacity at the client
device to ‘generate’ a different subset of tiles using the super-
resolution technique. This latter step fetches the ULR tiles
from the server plus the necessary DNN micro-models (§III).

Figure 4 shows the system architecture of PARSEC. The en-
coded video and ULR tiles are stored at the server. The client
makes the decision about which tiles to fetch or generate using
an ABR algorithm that is ‘neural-aware,’ i.e., understands the
tradeoffs between the two methods. The decisions also take as
input the user’s viewport probability distribution and available
network vs. compute capacity. The goal is to optimize the
overall video quality of experience (QoE).

HEVC
Encoded

Segments

HTTP Server

Network
State

Client

Render and Display
Decoded Playback Buffer

Neural-Aware ABR Algorithm

Inference
Scheduler for

Generated
Tiles

Bitrate
Selection for
Downloaded

Tiles

ULR Tiles
& Micro-
Models

Offline
Super

Resolution
Model

Training

Only these
components
present in
state-of-the-art
360° video
streaming

Viewport
Prediction

Generated and
Downloaded Tile

Qualities

Compute
Capacity

Fig. 4: PARSEC’s end-to-end 360◦ video streaming system.

A. Modeling Quality of Experience

The 360◦ video is divided temporally into segments and
spatially into N tiles. The ABR algorithm runs segment by
segment and chooses a set of tiles to fetch from the server
and another set of tiles to generate at the client for the
segment being considered. For generating the tiles, the ULR
representation of all tiles and the DNN micro-model are also
downloaded from the server. It is important to note that not
all tiles need to be fetched or generated.

Viewport prediction: A viewport prediction algorithm uses
1) offline analysis of video data and 2) user’s (online) head
tracking trace to predict the user’s viewport at the playback
time of the current segment being considered by the algorithm.
There is a growing interest in such algorithms in literature [15],
[23], [32], [34]. They essentially analyze the video to discover
salient features of the scene that is likely to capture the
viewer’s attention. This is augmented with the head tracking
trace (that captures past viewports) to estimate which portion
of the scene the user is likely to view in future. Such estimates
are typically generated as a probability distribution pi over all
tiles i comprising the 360◦ scene.

We follow a machine learning approach to predict the
viewport. The approach is a more refined version of recent
work [15]. The input to our prediction is saliency [13] and
motion [44] maps of the video (extracted offline) combined
with the online head movement data.

Video Quality of Experience (QoE): The video QoE is
characterized by the quality of the part of the scene actually
viewed during playback. This quality is influenced by the
resolution of the video shown during playback. It is also
influenced by missing video data (e.g., missing segments or
tiles), which typically will cause the player to stall. The
QoE formulation in PARSEC follows the traditional methods
adopted in video streaming literature [30], [32], [46] except
that PARSEC must take into account the quality of tiles
generated versus tiles downloaded.

We number the individual tiles in a segment from 1 to N
in row-major order. Let ri,D, ri,G and ri,M denote binary
decision variables that are set to 1(0) if ith tile is (not)
downloaded, (not) generated and (not) missed respectively.
It is possible to download a tile at different quality levels,
which we denote by qi,D. The quality level q here is a function
of the video bitrate R and indicative of the viewing quality
during playback. This can be modeled in various ways [27],

[46] such as simply using the bitrate directly, i.e., q(R) = R
or using it as an index to a table of possible rates R. We
take the latter approach (also used in [32]) and model quality
levels as an integer 0, . . . , k, with a larger number indicating
a higher quality. Quality 0 indicates no playback or missing
data. Finally, note that the quality of a generated tile qi,G is
constant for a given tile but could vary between tiles.

We model the expected playback quality of a segment E(Q)
as the sum of expected quality of the individual tiles:

E(Q) =

N∑
i=1

pi(qi,Dri,D + qi,Gri,G) (1)

There is a loss of quality whenever a tile is missed. We
represent this tile miss E(M) as:

E(M) =

N∑
i=1

piri,M (2)

There is also a loss of quality due to variations in the quality
of the viewed tiles. This can be both due to changes in the
quality across different segments, and across all tiles of the
same segment. We utilize standard deviation Vs of quality of
the tiles in a segment:

Vs =

N∑
i=1

StdDev[pi(qi,Dri,D + qi,Gri,G)] (3)

We utilize the expected change in the value of quality (Q) of
tiles across different segments:

Vt = |E(Q)−Qt−1|, (4)

where Qt−1 denotes the quality of the previous tile. Note
that Qt−1 is a known quantity (not an expectation), since the
actual decisions and experiences in the previous segment can
be recorded. Thus, the overall quality of experience (QoE) is
given by their linear combinations:

QoE = E(Q)− βE(M)− ξ(Vs + Vt), (5)

where β and ξ represent the different weights attached to each
component of QoE. We auto-tune β and ξ using a technique
similar to Oboe [12]. Our objective is to maximize QoE in
equation (5) while ensuring that we get a feasible solution.
Constraints: The following constraints ensure the feasibility
of the solution. The quality due to download can only be
positive if the tile is downloaded, i.e.

qi,D ≥ ri,D (6)

Also, every tile must be either downloaded, generated or
missed, i.e.,

ri,D + ri,G + ri,M = 1, ∀i = 1, . . . , N (7)

Finally, all generation and downloading must complete some
time δ before the playback (Pt is the time until playback).
Let d(qi,D) be the time required to fetch tile i at quality qi,D.
Similarly, let d(qi,G) be the time required to generate tile i.
Then, this constraint is represented as:

N∑
i=1

d(qi,D)ri,D + δ ≤ Pt, and
N∑
i=1

d(qi,G)ri,G + δ ≤ Pt (8)

They represent network capacity and compute capacity con-
straints respectively.

Parameter Description
N Total number of tiles in a segment
pi View probability of tile i

d(qi,D) Time to download tile i
d(qi,G) Time to generate tile i
Pt Time until start of playback
δ Buffer period before playback time

qi,D Quality level of downloaded tile i
qi,G Quality level of generated tile i
ri,X Mutually exclusive decision variables, X = D,G or M

denoting download, generation or miss respectively

TABLE I: Parameters used in problem formulation.

B. Optimizing QoE

Our objective now is to maximize QoE in equation 5 for
the segment being considered by the ABR algorithm, subject
to the constraints in equations 6-8. While it is formulated
as an ILP, we solve the optimization problem using a fast,
greedy heuristic (§IV-C). The QoE (equation 5) is maximized
subject to a set of constraints. The first two constraints, shown
in equations 6 and 7 ensure that if a tile gets downloaded
or generated, it is assigned a positive quality level. The last
two constraints shown in equation 8 are capacity constraints
ensuring that the download and generation of segments must
be completed before playback. These constraints state that the
time to get the tiles ready (from both generation and network
download) should be no later than the playback time (Pt), with
a delta (δ) time reserved for sundry computational work such
as decoding of downloaded tiles and stitching of tiles to make
scene ready for viewing. These constraints need to estimate
available network bandwidth and available compute capacity.
More on these shortly.

This optimization serves the purpose of ABR control. It
relies on bandwidth estimation (constraint 8). While a variety
of mechanisms could be adopted we use a technique similar
to MPC [46], where available bandwidth is estimated using a
harmonic mean predictor of past throughputs observed. The
estimated throughput is used to estimate the download time
of tiles based on their quality levels. The compute capacity
estimation is relatively easier as the client device is typically
not a shared resource and it has a well-defined fixed capacity.5

As observed in §III, the quality of these generated tiles
can vary significantly. Hence choosing the tiles just based on
tile probabilities may generate poor quality tiles. To address
this, we extend the structure of the manifest file supported
by DASH. As the server can generate the tiles offline, we
calculate the quality of each tile generated and encode the
quality information in the manifest file. This is analogous to
encoding different representations of a tile in the manifest file,
except here each generated tile has a fixed quality. We use this
quality information in the ABR algorithm while scheduling
tiles for network and compute.

The algorithm runs right before a segment starts playing
to determine how the next segment will be downloaded and

5In this context, one can imagine use of edge computing to exploit more
compute capacity on the client side. The same general formulation would still
apply. We leave this as a future work.

generated. Additionally, the ULR tiles and micro-model of
the next segment are downloaded at the beginning of the
current segment. The rate adaptation algorithm should be run
frequently (i.e., need to choose small segments) because of the
limited ability of viewport prediction. Hence the computation
should be fast (few ms). Since the problem is NP-Hard, using
an optimization solver does not guarantee a solution within
such a limited period. We use a fast, greedy heuristic in our
evaluation as described below.

C. Greedy Heuristic

Our greedy heuristic utilizes the fact that increasing the
quality of a tile requires either additional network bandwidth
or compute power, and thus it must be done carefully based
on the view probability of tiles and ensuring satisfaction of
constraints defined in (8). For brevity we only provide a
high-level textual description below. The algorithm begins by
setting quality level of all tiles to zero (indicating that they
will be neither downloaded nor generated). The algorithm
then increases the quality level of the tile with the highest
probability by one (i.e., next possible quality). This may be
either using compute or download, depending on the current
quality level. In the next step, we check whether increasing
the quality level of the same tile or the tile with the next
highest probability leads to a higher value of QoE. We choose
the option that provides a higher value. In this way, we keep
selecting the better option until the constraints in (8) are
reached or QoE can no longer be improved any further.

The time complexity of the algorithm is O(N2k), where
k is the number of qualities available (analysis omitted for
brevity). In the actual experiment reported later, the heuristic
runs in less than 2ms for 200 tiles and 5 quality levels.

D. Rescheduling of Tile Generation

As noted before, viewport prediction is often not suffi-
ciently accurate. While our viewport prediction is superior to
Flare [32] over longer time horizons, this is still not enough
(only 62% accurate over 3 sec). PARSEC is able to address this
by recalculating the viewing probabilities of tiles for future
frames in the current segment being played. This provides a
much higher accuracy as the time horizon is now much shorter.
The new information is used to reschedule tile generation
which greatly reduces tile miss rate.

V. EVALUATION

We implement the 360◦ video streaming system as shown
in Figure 4 and evaluate the performance w.r.t. multiple
approaches on a mobile client platform. Below we present
the testbed, our methodology and then experimental results.

A. Testbed

Client and server implementation: The client video player is
implemented in C language based on an open-source adaptive
streaming video player, MP4Client [7]. We present results
using Google Pixel2 as the client (Adreno 540 GPU). To
generalize the results, we also evaluate on 5 additional devices

(Figure 9). We use Node.JS to host the content on the server
using MPEG-DASH compliant HTTP adaptive streaming [36].
The server is hosted using NodeJS on a Linux Desktop.
Video segmentation: We use GPAC’s MP4Box tool to divide
the video spatially into segments and then temporally into tiles.
We use kvazaar [6], an HEVC based implementation [38]
for encoding the videos. Overall, the step-by-step procedure
to prepare the DASH segments is 1) encode the videos using
kvazaar, 2) divide the video spatially using MP4Box, 3)
package the video in DASH format into tiled segments with
multiple representations and 4) generate the manifest file.
Offline processing: For training DNN micro-models, we use
Keras [4] and Tensorflow [10] in Python and an Nvidia GTX
1070 GPU. For each video, we get ULR tiles for each tile
in a segment and one model for each segment. The training
time for each video (i.e., for all micro-models) is around 20
minutes. Apart from learning the DNN models, the videos are
also processed offline for traditional ABR streaming, by the
DASH standard [36]. Once the offline processing is complete,
the DASH segments, the micro-models, and the ULR tiles are
stored in the server. From the server’s point of view, these
additional models and ULR tiles are simply treated as new
content; it will be streamed to the client upon a request. The
result is that there is no server-side modification and we can
work with standard MPEG-DASH capable server.

We evaluate PARSEC under four different network condi-
tions and compare it with four state-of-the-art alternatives. We
describe our experimental methodology first.

B. Network Settings

End-to-end experiments over WiFi: We host a video server
in two different locations: Loc1 is around 20ms RTT from
the client and Loc2 which is 40ms RTT from the client. We
choose these locations to serve as a proxy for CDNs. The client
is hosted in our lab. We use Aruba WiFi AP with 802.11ac
link speed. We stream the video from the server to the client
according to the different streaming algorithms. We do not
throttle the speed.
Real network traces: We collect real network traces from
two popular sources—FCC released broadband dataset [8] and
4G/LTE network measurements from the Ghent university [5].
We filter the traces to have a minimum bandwidth of 1 Mbps
to initiate the video flow. After filtering, FCC dataset has an
average bandwidth of 8.2 Mbps with a standard deviation of
3.6 Mbps and Belgium dataset has an average of 19.3 Mbps
with a standard deviation of 6.1 Mbps.
Synthetic traces: Finally, we conduct a small set of experi-
ments on synthetic network conditions to stress test PARSEC
under poor (e.g., 1 Mbps) versus good (e.g., 20 Mbps) network
conditions. We use Mahimahi [28] to emulate the network
conditions.

C. Experimental Methodology

We compare PARSEC with the following alternatives:
• VP only: VP only [15] uses viewport prediction to reduce
bandwidth required to fetch 360◦ videos. It only fetches

predicted viewport-specific tiles and suffers from frequent
tile misses.
• Flare: Flare [32] is the state-of-the-art 360◦ video streaming

system that combines viewport prediction with an ABR al-
gorithm. Flare preemptively fetches some non-viewport tiles
to compensate for the low accuracy of viewport prediction.
• NAS-regular: NAS [45] is designed for regular video
streaming and leverages super-resolution. Because NAS is
not designed for 360◦ video streaming, it does not use
viewport prediction and fetches all tiles in the segment. We
call it as NAS-regular.
• NAS-360: For a fair comparison, we also experiment with
a version of NAS that is adapted for 360◦ video streaming.
We call this scheme NAS-360. NAS-360 uses our viewport
prediction to fetch only viewport-specific tiles. This essen-
tially means NAS-360 is PARSEC with NAS’s single model
inference instead of our micro-model inference.

For a fair evaluation, we use the same viewport prediction
algorithm (described in §IV) for all alternatives that use
viewport prediction. We verify that our viewport prediction
technique provides 26% better median accuracy than that
described in Flare [32] for one second window.

Other regular video streaming techniques include
BOLA [37], and Pensieve [27] perform significantly worse
compared to PARSEC for 360◦ video streaming (because
they are viewport agnostic). We omit the comparisons for
these other systems in the interest of space.
360◦ video dataset: We use the most commonly used 360◦

video head movement dataset [25] in our evaluation. The
dataset contains a total of 500 traces with 10 videos, each
video watched by 50 users. Each trace contains a user’s head
position (yaw, pitch and roll) for every frame. Using the raw
head movement data, we derive the viewport and viewport-
specific tiles. The videos are typically about 1 min long. In
the default case, we split each video temporally into 1 sec
segments. Each video is encoded and projected using equi-
rectangular projection at 4K quality (3840× 1920). For ABR,
we transcode the video in 5 different quality levels – 1 Mbps,
5 Mbps, 10 Mbps, 15 Mbps and 20 Mbps.
Performance metrics: We measure performance using three
metrics — (i) quality level (as defined in §IV-A), (2) miss
ratio – fraction of tiles that are not available in the user’s
viewport as determined by the user’s head movement, and (3)
QoE as defined in equation 5. We present QoE in a normalized
form against the maximum QoE possible. In some evaluations
where multiple network traces are used (e.g., Figure 5), the
QoE for each segment is averaged over all traces (average QoE
or normalized average QoE, as appropriate).
Parameter selection: There are several parameters involved
in evaluating the performance. Through empirical analysis, we
choose the following design decisions. We use a tile size of
192x192 to achieve efficient viewport adaptation with minimal
cross-tile compression overheads. We down-scale the tiles to
24x24 to avoid extreme quality loss and large models. We
aim to achieve at least 30dB PSNR which is a minimum

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
User Perceived Quality Level

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F PARSEC

NAS-360

Flare

NAS-regular

VP_only

(a)

0 5 10 15 20 25 30 35 40
Tile Miss Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F PARSEC

NAS-360

Flare

NAS-regular

VP_only

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F PARSEC

NAS-360

Flare

NAS-regular

VP_only

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
User Perceived Quality Level

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

PARSEC

NAS-360

Flare

NAS-regular

VP_only

(d)

0 5 10 15 20 25 30 35 40
Tile Miss Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F PARSEC

NAS-360

Flare

NAS-regular

VP_only

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

PARSEC

NAS-360

Flare

NAS-regular

VP_only

(f)

Fig. 5: Comparing PARSEC with state-of-the-art video streaming approaches. The experiments are done on a Google Pixel2
phone over real network traces from a broadband network released by the FCC (a-c) and 4G/LTE network from Belgium (d-f).

perceivable quality while inferring. We experiment with a
segment duration of 1-3 sec because the prediction accuracy
is very low beyond 3 sec.

D. Performance Results

Performance under broadband network traces: Figure 5
(a)-(c) shows the performance for the four alternatives over
real broadband traces released by FCC. PARSEC improves
performance by 61% and 48% on average quality level and
normalized average QoE compared to the state-of-the-art
360◦ streaming protocol Flare. PARSEC exploits both client’s
compute and network resources, while Flare [32] only uses
network resources to fetch video tiles.

PARSEC also outperforms NAS-360 by 42% in terms of
QoE. Recall that NAS-360 is a version of NAS [45] that
we adapted for 360◦ streaming with viewport prediction (this
is a conservative estimate here because we eliminate model
download for NAS-360). In the case of NAS-360, large model
size results in poor inference rate and can only generate a
few tiles per second on the device. NAS-regular performs
even worse because it is viewport agnostic (i.e., brings in all
tiles) and suffers from poor inference rate. Notice that NAS-
regular has no misses because it fetches all tiles, but with
lower quality. VP only streams viewport-specific tiles only
and hence experiences high miss ratio because of inaccurate
viewport prediction, and has in general, the worst performance.

Performance under 4G/LTE network traces: Figure 5 (d)-
(f) shows performance of PARSEC and the four alternatives
for the 4G/LTE Belgium network traces. Under the 4G/LTE
network traces, PARSEC improves performance by 30% and
37% of average quality level and normalized average QoE
when compared with state-of-the-art system Flare [32].

The FCC’s broadband network is more constrained com-
pared to the 4G/LTE network traces in terms of capacity. As
a result, the benefits of PARSEC are higher on the broadband

VP_only NAS-regular Flare NAS-360 PARSEC0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Qo

E

Location1 Location2

(a)

VP_only NAS-regular Flare NAS-360 PARSEC0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
BW

 U
sa

ge

Location1 Location2

(b)

Fig. 6: QoE and bandwidth usage under real WiFi network
with no bandwidth throttling (Pixel2 phone). The error bars
represent the standard deviation.

network compared to the 4G/LTE network. All the other
methods also have similar trends.

End-to-end experiments over WiFi: We compare the per-
formance of the four alternatives for a highly provisioned
WiFi network setting with no throttling. These are end-to-
end experiments where the videos are hosted in two server
locations, Loc1 and Loc2. Figure 6a shows normalized average
QoE. Similar to the experiments with network traces, PARSEC
outperforms the four alternatives. PARSEC improves average
QoE by 17% and 28% compared to Flare in Loc1 and Loc2
respectively. Loc1 is closer to the client with a lower RTT. This
makes the network performance better, resulting in a lower
overall improvement.

We also study the bandwidth utilization. Normalized band-
width usage of PARSEC is 68% and 43% lower compared to
NAS-regular and Flare respectively (Figure 6b). NAS-regular
is viewport agnostic and streams all tiles. Flare streams some
non-viewport tiles to compensate for misses in case the user’s
viewport changes. PARSEC has the lowest bandwidth usage
because it chooses carefully which tiles to download at high
resolution and which tiles to generate at the client. NAS-360
performs slightly better than Flare both in terms of QoE and
bandwidth usage because some of the tiles will be enhanced
at the client.

1.0 1.5 2.0 2.5 3.0
QoE Ratio (PARSEC/Flare)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Good (20Mbps)

Average (10Mbps)

Bad (1Mbps)

Fig. 7: Improvement in average QoE for PARSEC over Flare
under good, average, and bad network conditions (Pixel2
phone).

1.0 1.5 2.0 2.5
QoE Ratio (PARSEC/Flare)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

pw = 1 Sec

pw = 2 Sec

pw = 3 Sec

(a)

0.2 0.4 0.6 0.8 1.0
BW Usage Ratio (PARSEC/Flare)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

pw = 1 Sec

pw = 2 Sec

pw = 3 Sec

(b)

Fig. 8: QoE and bandwidth usage ratio for PARSEC over Flare
for different video lengths (Pixel2 phone).

Different network conditions: We also evaluate the four
alternatives under an ideal network scenario where both the
client and server are in the same VLAN and the network
capacity is high. PARSEC performs similar to NAS-regular in
terms of QoE. However, PARSEC requires 2.3× and 1.8× less
bandwidth compared to NAS-regular and Flare respectively
(not shown here for brevity). This is because, when there are
no network constraints, NAS-regular will fetch all tiles at high
quality from the server.

PARSEC is designed specifically to work well when there
is insufficient bandwidth. To stress test PARSEC, we compare
the performance of PARSEC and Flare under three synthetic
network scenarios—1 Mbps, 10 Mbps, and 20 Mbps average
throughput. We only compare against Flare as it is the state-of-
the-art end-to-end viewport adaptive system. Figure 7 shows
the QoE ratio of PARSEC to Flare under these throughput
rates. PARSEC sees more benefits under poorer networks.
PARSEC outperforms Flare by 1.3×, 1.5×, and 1.8× under
20 Mbps, 10 Mbps and 1 Mbps respectively.
Streaming longer video segments We evaluate PARSEC to
determine the benefits of supporting longer video segments.
We use segments of duration 1s, 2s, and 3s, corresponding
to a prediction window (pw) of 1s, 2s and 3s, respectively.
Beyond 3s, the viewport prediction accuracy is not acceptable.
These experiments were performed on the 4G/LTE traces
collected from Belgium. Again, we only compare against
Flare because it is the state-of-the-art viewport adaptive 360◦

video streaming system. Figure 8 shows normalized average
QoE and network usage for three different segment durations.
The key takeaway is that PARSEC can improve QoE by
1.7× while simultaneously minimizing the network usage by
47% compared to Flare for segment duration of 3s. Also,
longer segments have better compression efficiency because
of exploiting redundancy for longer duration. The QoE and
bandwidth usage ratio both are improved substantially from

Quality
Level

Miss Ratio
 (90th Percentile)

QoE0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
Av

er
ag

e
Va

lu
e Galaxy S7

Pixel 3
Galaxy S10
1070 Ti

1080
Titan XP

Fig. 9: Impact of GPU capacity on the QoE of PARSEC.
Various mobile and desktop GPUs are considered. FCC traces
are used for network. The Y-axis is the value of each metric
normalized against it’s maximum.

1s to 3s segments. We find that the dynamic rescheduling
is playing crucial role for the 3s segments as the viewport
prediction accuray is poor (less than 65%), and this impacts
Flare much more adversely than PARSEC.

Impact of compute capacity: We evaluate PARSEC’s perfor-
mance for varying compute capacity by experimenting with six
different devices (Figure 9). We specifically include high-end
Desktop-grade GPUs as we expect future smartphones will
have such powerful GPUs. Nvidia Titan XP is the highest-
performing GPU used, while Galaxy S7 (Adreno 530 GPU) is
the weakest. Figure 9 shows that as we increase the compute
capacity from Galaxy S7 to Titan XP, the normalized quality
level and QoE are increased by 31% and 44% respectively.
The 90th percentile miss ratio also decreases by 7%. The key
takeway is that PARSEC performs better with faster GPUs.

As a final note, PARSEC does have additional energy
overhead – varying between 12-22% in our evaluations over
other streaming methods (as measured using Snapdragon Pro-
filer [3]). This is to be expected due to the additional GPU
use. We expect that advances in low-power GPU technologies
for mobile platforms will address this problem.

VI. CONCLUSIONS

We have described PARSEC, a system that combines net-
work and compute resources intelligently to stream 360◦

videos with high quality. PARSEC leverages the super-
resolution technique that involves compressing the video at
the server and then running deep learning inference at the
client to enhance the video to high resolution. Since the deep
learning model sizes can be big for 360◦ videos, PARSEC
uses micro-models over short video segments to reduce model
size and inference time. PARSEC then intelligently combines
the super-resolution technique with traditional video encoding
techniques so that the system can exploit the advantages of
both by combining network and compute resources. PARSEC
outperforms the state-of-the-art 360◦ video streaming systems
under various network conditions.

ACKNOWLEDGEMENTS

This work was partially supported by NSF grants CNS-
1642965 and CNS-1718014.

REFERENCES

[1] http://mathworld.wolfram.com/EquirectangularProjection.html.
[2] https://wiki.panotools.org/Cubic Projection.
[3] https://developer.qualcomm.com/sites/default/files/docs/snpe/.
[4] Chollet, françois and others, keras. https://keras.io/, 2015.
[5] 4G/LTE bandwdith logs, Ghent University, Belgium.

https://users.ugent.be/ jvdrhoof/dataset-4g/, 2016.
[6] Kvazaar. https://github.com/ultravideo/kvazaar, 2017.
[7] GPAC. https://github.com/gpac/gpac, 2017.
[8] Measuring broadband america, FCC. https://www.fcc.gov/reports-

research/reports/measuring-broadband-america/raw-data-measuring-
broadband-america-eighth, 2018.

[9] https://www.androidauthority.com/qualcomm-snapdragon-mobile-npu-
896223/, 2019.

[10] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[11] Shahryar Afzal, Jiasi Chen, and KK Ramakrishnan. Characterization of
360-degree videos. In Workshop on VR/AR Network, pages 1–6. ACM,
2017.

[12] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica
Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang.
Oboe: auto-tuning video abr algorithms to network conditions. In
SIGCOMM, pages 44–58. ACM, 2018.

[13] Ali Borji, Ming-Ming Cheng, Qibin Hou, Huaizu Jiang, and Jia Li.
Salient object detection: A survey. arXiv preprint arXiv:1411.5878,
2014.

[14] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image
super-resolution using deep convolutional networks. IEEE transactions
on pattern analysis and machine intelligence, 38(2):295–307, 2016.

[15] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta
Chen, and Cheng-Hsin Hsu. Fixation prediction for 360 video streaming
in head-mounted virtual reality. In NOSSDAV. ACM, 2017.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In NIPS, pages 2672–2680, 2014.

[17] Mario Graf, Christian Timmerer, and Christopher Mueller. Towards
bandwidth efficient adaptive streaming of omnidirectional video over
http: Design, implementation, and evaluation. In MMSys. ACM, 2017.

[18] Pan Hu, Rakesh Misra, and Sachin Katti. Dejavu: Enhancing video-
conferencing with prior knowledge. In HotMobile, pages 63–68. ACM,
2019.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[20] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba. Learn-
ing to predict where humans look. In CVPR, pages 2106–2113. IEEE,
2009.

[21] Jean Le Feuvre, Cyril Concolato, and Jean-Claude Moissinac. Gpac:
open source multimedia framework. In Multimedia Conference, pages
1009–1012. ACM, 2007.

[22] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya,
and Nicholas D Lane. Mobisr: Efficient on-device super-resolution
through heterogeneous mobile processors. In MobiCom, pages 1–16,
2019.

[23] Chenge Li, Weixi Zhang, Yong Liu, and Yao Wang. Very long term
field of view prediction for 360-degree video streaming. arXiv preprint
arXiv:1902.01439, 2019.

[24] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung
Mu Lee. Enhanced deep residual networks for single image super-
resolution. In IEEE CVPR Workshops, pages 136–144, 2017.

[25] Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang, Kuan-Ta
Chen, and Cheng-Hsin Hsu. 360 video viewing dataset in head-mounted
virtual reality. In MMSys, pages 211–216. ACM, 2017.

[26] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
nonlinearities improve neural network acoustic models. In Proc. icml,
volume 30, page 3, 2013.

[27] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive
video streaming with pensieve. In SIGCOMM, pages 197–210. ACM,
2017.

[28] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. Mahimahi: Accurate
record-and-replay for {HTTP}. In ATC, pages 417–429, 2015.

[29] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. Your attention is
unique: Detecting 360-degree video saliency in head-mounted display
for head movement prediction. In Multimedia Conference, pages 1190–
1198. ACM, 2018.

[30] S. Park, A. Bhattacharya, Z. Yang, M. Dasari, S. R. Das, and D. Samaras.
Advancing user quality of experience in 360-degree video streaming. In
2019 IFIP Networking Conference, pages 1–9, May 2019.

[31] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution
image reconstruction: a technical overview. IEEE signal processing
magazine, 20(3):21–36, 2003.

[32] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. Flare:
Practical viewport-adaptive 360-degree video streaming for mobile de-
vices. In MobiCom, pages 99–114. ACM, 2018.

[33] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing internal representations by error propagation. Technical report,
California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[34] Yago Sanchez, Gurdeep Singh Bhullar, Robert Skupin, Cornelius Hellge,
and Thomas Schierl. Delay impact on MPEG OMAFs tile-based
viewport-dependent 360 video streaming. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 2019.

[35] Wenzhe Shi, Jose Caballero, Christian Ledig, Xiahai Zhuang, Wenjia
Bai, Antonio de Marvao, Tim Dawes, Declan ORegan, and Daniel
Rueckert. Cardiac image super-resolution with global correspondence
using multi-atlas patchmatch. In MICCAI, pages 9–16. Springer, 2013.

[36] Iraj Sodagar. The MPEG-DASH standard for multimedia streaming over
the internet. IEEE MultiMedia, (4), 2011.

[37] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-
optimal bitrate adaptation for online videos. In INFOCOM, pages 1–9.
IEEE, 2016.

[38] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (HEVC) standard. IEEE
Transactions on circuits and systems for video technology, 22(12):1649–
1668, 2012.

[39] Ron Tenne, Uri Rossman, Batel Rephael, Yonatan Israel, Alexander
Krupinski-Ptaszek, Radek Lapkiewicz, Yaron Silberberg, and Dan Oron.
Super-resolution enhancement by quantum image scanning microscopy.
Nature Photonics, 13(2):116, 2019.

[40] Nikolaos Thomos, Nikolaos V Boulgouris, and Michael G Strintzis.
Optimized transmission of jpeg2000 streams over wireless channels.
IEEE Transactions on image processing, 15(1):54–67, 2005.

[41] Mengbai Xiao, Chao Zhou, Yao Liu, and Songqing Chen. Optile: Toward
optimal tiling in 360-degree video streaming. In Multimedia Conference,
pages 708–716. ACM, 2017.

[42] Mengbai Xiao, Chao Zhou, Viswanathan Swaminathan, Yao Liu, and
Songqing Chen. Exploring spatial and temporal adaptability in 360-
degree videos over http/2. In INFOCOM, pages 953–961. IEEE, 2018.

[43] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo.
Improving qoe of 360 video streaming using tile-based http adaptive
streaming. In Multimedia Conference, pages 315–323. ACM, 2017.

[44] Xiaodong Yang, Chenyang Zhang, and YingLi Tian. Recognizing actions
using depth motion maps-based histograms of oriented gradients. In
Multimedia Conference, pages 1057–1060. ACM, 2012.

[45] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu
Han. Neural adaptive content-aware internet video delivery. In OSDI,
pages 645–661, 2018.

[46] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A
control-theoretic approach for dynamic adaptive video streaming over
http. In ACM SIGCOMM, volume 45, pages 325–338. ACM, 2015.

[47] Matt Yu, Haricharan Lakshman, and Bernd Girod. A framework
to evaluate omnidirectional video coding schemes. In 2015 IEEE
International Symposium on Mixed and Augmented Reality, pages 31–
36. IEEE, 2015.

[48] Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef
Gabbouj. HEVC-compliant tile-based streaming of panoramic video for
virtual reality applications. In Multimedia Conference, pages 601–605.
ACM, 2016.

[49] Chao Zhou, Zhenhua Li, and Yao Liu. A measurement study of oculus
360 degree video streaming. In MMSys, pages 27–37. ACM, 2017.

[50] Wilman WW Zou and Pong C Yuen. Very low resolution face recogni-
tion problem. IEEE Transactions on image processing, 21(1):327–340,
2012.

